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Stationary Boltzmann Equation for a 
Degenerate Gas in a Slab: 
Boundary Value Problem and Hydrodynamics 
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The boundary value problem for the stationary Boltzmann equation for a model 
gas in a plane slab is solved in full generality. The asymptotic behavior as the 
size of the slab goes to infinity is studied via a Chapman-Enskog expansion. 
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1. I N T R O D U C T I O N  

We consider the Boltzmann equation describing the stationary state of a 
rarefied gas confined in a slab where the molecules undergo very special 
collisions. The boundary conditions are of diffusive type: when a particle 
hits the wall it is reemitted with a given distribtion. In this way we 
construct a nonequilibrium model of a rarefied gas and we investigate its 
stationary distributions and its hydrodynamic behavior. Because of the 
simplified interaction, the analysis leads to rather detailed information on 
the system and gives some insight into the more physical situations which 
have been the object of many  investigations. (1-3) 

The two-dimensional collision model is the following: if (Vx, Vy) and 
(Vlx, vly) are the incoming velocities, we assume that the outgoing ones are 
simply given by the rule 

! t 
/ )x ~ Vlx~ Vy = 1)y 

(1.1) 
I)tlx = V x ,  D'ly = 1) ly  
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i.e., exchange in the x direction and conservation in the y direction (we 
think of match sticks parallel to the y axis). 

We shall study the system in the Boltzmann-Grad limit: i.e., the 
description is reduced to the kinetic level. The corresponding Boltzmann 
equation for the distribution function f,(x, y, Vx, vy) can be written in a 
straightforward way; putting equal to one the constant in the collision 
integral, we have 

(a, + vxO~ + VyOy) f,(x, y, Vx, Vy) 

=f  [Vx--Vlx[ {ft(x, y, V l x ,  Vy)ft(x, y, v x ,  Ply) 

-f~(x,y,v~,vy)f~(x,y, Vlx, Vly)}dvl~dv O, (1.2) 

2. S T A T I O N A R Y  B O U N D A R Y  V A L U E  P R O B L E M :  
R E S U L T S  O N  T H E  S O L U T I O N  

We consider the particles confined in a slab with vertical walls at 
x = - L ,  x = L. We shall look for a stationary solution that depends only 
on (x, v x, Vy)~ [ - L ,  L ]  x R x N. The boundary conditions will be given in 
a slightly more general way than in the usual case, where heat exchange 
with reservoirs at given temperatures is assumed to occur at the walls. 

The boundary conditions at x = _+L are 

(vx, vy) fv vx f ( -L ,  vx, vy) dvxdvy, v~>~O f ( - L ,  vx, Vy)= --H 
x <~O 

(2.1) 

f(L, Vx, Vy)=H+(Vx, Vy) fv Vxf(L, vx, vy) dvxdvy, vx<~O 
x>~ O 

where H _  and H+ are nonnegative functions such that 

fv vxH+(vx, vy)dvxdvy= --1 
x<~ O 

(2.2) 

f~ v~,H (Vx, Vy) dvx dry = +1 
x>~O 

Such conditions take care of the requirement that the net mass flux across 
each boundary is zero. 

The equation (1.2) will be reduced to the following form: 

v~Oxf(x, Vx, vy)= f Ivx-Vlxl {f(x,  vl~, vy) f(x, v~, Vly ) 

--f(x, v~, Vy)f(x, Vlx, 1)ly)} dvlx dDly (2.3) 
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We remark that when H_ and H+ are given by the single function H, 

H(Vx, Vy)={H+(vx, Vy)=q)+(Vx)~l(Vy), vx~O 
(Vx, v,) = ~ (vx) ~(v,), ~x >t o 

i.e., factorization holds (since the Vy distribution r is the same at the two 
walls), then the stationary solution of (2.1), (2.3) is given by 

v~, Vy)= H(vx, vy)n/f H(vx, vy)dvxdvy 
f 

f (x ,  

where n = ~ f (x ,  vx, vy)dvx dry represents the number density; it is constant 
because from Eq. (2.3) the "partial density" If(X, Vxvy) dvy is already 
independent of x. Let us fix the total number of particles 
2Ln = ~ f (x, v~vy) dry dv ~ dx. 

In the general case we have the following results: 

Theorem 1 (Existence and uniqueness). For any functions H+ 
satisfying (2.2) there exists a unique, stationary solution fL(x, Vx, Vy) for 
the problem (2.1), (2.3). This solution is bounded in the sup norm in term 
of the boundary data. 

To prove Theorem 2, we need to restrict the boundary distributions as 
follows: 

H+(vx, vy)= ~b+(vx)r +(vy), v~<0  
(2.4) 

H (v~,Vy)=q}_(v~)r (Vy) ,  Vx>>,O 

(this assumption corresponds to the choice of "Maxwellian" outgoing 
distribution for more physical models). We can choose IO+(vy) dl)y= 1 
and, if Z(') denotes an indicator function, posing 

d(vx) = ~ + (vx) z(vx ~ 0) + ~_ (vA z(v~ >/0) 
we have: 

Theorem 2 (Asymptotic behavior). For any H+ satisfying (2.2) 
and (2.4) we have 

n~)(vx) (~l +(Vy)-}-~l_(Vy) ~. ~l +(l)y)~_L~l (Vy)x) 
f~(x, v~, ~)  ~ ~ ~(~)'aVx \ 2 

as L-~oo 

Theorem 1 is proven in the next section by an iterative procedure. 
From Theorem 2 we have that when the size of the region goes to 

infinity, the stationary solution will be very close to the equilibrium one 
plus a linear term with a gradient proportional to 1/L. 
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We prove this asymptotic behavior by using the Chapman-Enskog 
procedure. (4) Associated with the kinetic equation we will introduce a 
stochastic process that gives a simpler formulation of the previous problem. 
In the last section we consider the same model in the case where the 
velocities are just _+ 1; in this case the solution is given explicitly. 

3. THE EXISTENCE THEOREM 

Integrating Eq. (2.3) on the vy variable, we have 

f f(x,  Vx, vy) dry = gf(Vx), v~ ~ 0 

i.e., "the partial density" &(vx) does not depend on x for a.e. Vx. We can 
evaluate it in the following way: if J+ denote the half-moments on the 
function &.(vx), 

J+=fvx>oVxgf(vx) dvx, J =fv~<~oVxgf(vx) dvx 

then, using the normalization conditions, we get 

(fv fv )--1 J+ = - J  = J = n H dvz dry + H+ dvx #IVy x>>.O x <~ O 

From the boundary conditions, integrating over Vy, we obtain 

g(Vx)=JI H_(vx,vy)dvy, vx>O 

g(Vx)=Jf H+(Vx, vy) dv u, vx<O 

(3.1) 

The function g(Vx) depends on the boundary distribution functions up 
to the normalization constant J, but not on the distribution function itself: 
this transforms our problem into a linear one. 

Let us call K[ [~b] the following integral operator: 

K [ ~ ] ( u ) =  f lu-u'l  ~(u*)du* 

Then Eq. (2.3) becomes 

Vxdxf(x, Vx, Vy)= g(Vx) K [ f ] ( x ,  vx, vy) - f ( x ,  vx, Vy) k(vx) (3.2) 



Boltzmann Equation for Degenerate Gas in a Slab 681 

where action of the operator on the vx variable is understood and k(vx) := 
K[g](vx). 

In order to study the linear problem we have obtained, let us change 
notations slightly, and also take a different approach to the various 
questions involved. 

Since the component Vy appears in the equation only as a parameter, 
as in ref. 5 we can consider it as a "color" specification, denoting it by c, 
and we use the shorter symbol v for vx; in this way the following inter- 
pretation of the equation clearly emerges: it is the stationary kinetic 
equation associated with the evolution of independent test particles 
(indexed by c) in the interval [ - L ,  L],  which interact with a background 
medium [described by the distribution g(v)]; this interaction is of 
collisional type and the collisional frequency is given by K[g].  

For a fixed value of c, the boundary conditions no longe give (in 
general) mass conservation: the walls act as absorbers and/or producers of 
particles of that "color" c, with possible unbalancing of mass. 

A complete study of the problem would give the function f ( x ,  v, c) for 
every c from the profile of the distribution function h(x, v] c) through the 
relation h(x, v [ c ) = f ( x ,  v, c)/g(v). In order to have a notation suitable for 
the following theorem, too, we pass to a scaled space variable: we set 
s = x/L, - 1 ~< s ~< 1, and h(s, v] c) = f ( sL ,  v, c)/g(v); calling e = l/L, we 
have for Eq. (3.2) 

vOsh=e 1Ah (3.3) 

where 

Ar = f Iv -- v'l g(v'){r -- r dr' 

is an unbounded operator defined on the dense set 

D(A)=  { r  5~ g(v) dr): f v2r g(v) dr < oe } 

and the boundary conditions are given at s = +1 as 

h ( - 1 ,  v l c ) = J H  (v,c)/g(v), v > 0  

h(1, v l c )=Jg+(v ,  c)/g(v), v < 0  
(3.4) 

We note that Ah=O iff h is independent of v, so that when H• c )=  
g(v) O(c)/J (where plus stands for v > 0 and minus stands for v < 0), then 
the equilibrium solution is h(x, v[c) = O(c). 
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The interpretation of Eq. (3.3) of use for the forthcoming analysis 
comes from the original particle model. To know the color of a particle, 
one simply has to follow it back until the particle comes out from the wall. 
At that time its color (vy velocity) distribution is determined by its v = Vx 
velocity. Therefore we consider the stochastic process on a state space 
A = {IsI < 1, ve R} having the generator G, which acts on bounded and cg~ 
function h, 

Gh(s, vlc)= - v  Osh(s, vlc)+ f Iv -v ' l  g(v'){h(s, v ' lc) -h(s ,  vlc)} dr' 

Namely, the v part of the process is a jump process with rate k(v) and 
transition probability density iv -v ' l  g(v')/k(v). The space part is just a 
drift with rate - v  (the minus sign comes from the fact that we are looking 
at the backward equation for the process). We stop the process at the first 
time ~ it reaches the boundaries s =  +1 (with velocities v<0 ,  v>0 ,  
respectively). Notice that ~ is finite with probability one, as can easily be 
seen. 

This interpretation suggests that we write the integral equation for the 
evolution associated with the previously considered process (6'7) 

ht(s, v lc) = ho(s, v lc) e x p [ - ~ - l k ( v ) t ]  Z(t <~ ~A(s, v)) 

+ h*(s,A, v,A [c) )~(t > (A(S, V))exp[--e-1 k(v) ~A(s, v)] 

fo 
^ CA 

+ exp[--e-lk(v)a] e-lk(v) 

x f Iv-wl g(w) ht ~(s-va, wlc) dw da (3.5) k(v) 

where (A(S, V)= IS + sign(v)]/v is the time it takes a particle, starting at 
(s, v), for the first crossing of the boundary without suffering a jump in 
velocity, and h*(s, v lc) for s = -t-_1 gives the boundary values. Passing to 
the limit t ~ +oe and stressing the dependence on the parameter e, we 
obtain the stationary integral equation corresponding to Eq. (3.3): 

h~(s 'vlc)=h~(vlc)exp[ - e - l k ( v )  sign(v)+v s] 

~ [sign(v) + s]/v 
+ e-1 e x p [ - ~  lk(v)G] 

"~0 

x ~ Iv - v'l g(v') h~(s - w,  v ' l c  ) dr' cl~ (3.6) 
J 
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where 

ha(v]c)=h*(-1, vlc) z(v >O) + h*(l, vlc) z(v <O) 

is the given "boundary" function. 
This equation could have been obtained via the change of variables 

y = s - v a  in the integral term treated as a perturbation of the 
homogeneous equation vOs~b +e-lk(v)r = 0; in this way one could obtain 
an integral equation similar to the one worked out for the Boltzmann 
boundary value problem/8 ~0) 

Now we shall prove through an iterative procedure the existence and 
uniqueness of the solution of Eq. (3.6); moreover, the solution is bounded 
by the sup-norm of the boundary datum. This is fairly obvious from the 
point of view of the stochastic interpretation, since the solution is the 
expected value of the boundary datum h a in the following sense: 

h(s, vie) = L,~(ha(v~ I c)) 

where rA is the random time of crossing the boundary starting from 
(s, v)~A (along the process described above). In fact this is readily 
achieved by studying the sequence (where dependence on the parameter c 
is omitted) 

h(N+I)(S,v)=hB(v)expI--~ ~k(v) Sign~ ) + s ]  

;~sign(v) 
+ +~]/~ ~ lexp[_e-lk(v)a] 

x f Iv - wJ g(w) h(N)(s -- wr, W) dw da, 

We have 

IhU)(s, v)l = ha(v) 

Now if we suppose 
11 h(N+ l)ll co ~ Ilhall ~" 

v)[ ~< t[ha[I~ exp [ Ih(U+l~(s, 

Is + sign(v)]/v 
+ ! 

~0 

• [ Iv - wl g(w)Ithall J 

N>~ 1, h(~ v)=O 

(3.7) 

s + sign(V)v e lk(v)] 

e x p [ - e  lk(v)a]e-1 

dw do" 

exp[ -e-lk(v)  sign(v)+s ] v ~ [!hBll'~ 

that IIh(mll~<~llhBll ~, we can show that 
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[ihBll~ exp [ s + s i gn (v )  lk(v)]  =: /3 
/) 

+ ] [ h ~ H ~ { 1 - e x p  I s+sign(v)e-lk(v)]}v 

(It is to be noted for later considerations that this estimate is uniform in ~.) 
This iteration leads to existence and uniqueness of the solution 

through a monotonicity argument, at least if we start from a nonnegative 
boundary datum h B, and this is reasonable because h(s, vlc):= 
f(s, v, c)/g(v), where both f and g are nonnegative. In fact, by subtracting 
one step from the preceding one, we have 

rh (N+ 1 ) _  h(N)](S,  v) = 8 -1 f~s+sign(v)]/v expr-/3 lk(v)~r] 

• f I v -- W I g ( w ) [ h  (N) --  h f N -  l ) ] ( s  - wr, w )  dw da  

so, if [h  (N) - h ( N -  1)](s,  v ) />  0, t he  s a m e  wi l l  h o l d  for  [h  (N+ 1) _ h(N)](s ,  v); 

and, since we suppose hB>~ 0, it follows that 

rh~l~- h~~ v)= h~l)(s, v)= hS(v) exp [ -e-~  k(v) S + si-gv n(V)] >~O 

Hence, there exists 

lim h(N)(s, v) = h~(s, v) and [[h~[[ ~ ~< [IhBl[ oo 
N ~ o o  

Moreover, the limit function satisfies Eq. (3.6), as can easily be seen. From 
the equation it follows that vO,h exists, so that Eq. (3.3) is satisfied; 
uniqueness is obtained by applying the last estimate to the difference of two 
possible solutions (with the same hB): it satisfies the equation with zero 
boundary value. 

4. ASYMPTOTIC  H Y D R O D Y N A M I C  BEHAVIOR 

We consider now the asymptotic of the solution as e ~ 0 +. Looking at 
the associated process, we can imagine that when the size L goes to 
infinity, the test particle that starts from a fixed (s, v) suffers so many jumps 
before reaching the boundary that it eventually becomes "thermalized": 
namely, it will lose memory of the initial velocity and its velocity dis- 
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tribution will become very close to the equilibrium one. By the invariance 
principle its motion (suitably rescaled) converges to a Brownian motion, so 
that the probability of being at + L  will depend linearly on the initial 
position x. In this original microscopic variable x ~ [ - L ,  L]  the gradient is 
proportional to e = 1/L and to the difference of the boundary distribution 
for the given color c. It would be possible to prove this rigorously, but we 
prefer to use a more physical argument, i.e., an adaptation of the 
Chapman-Enskog procedure. (4) 

We should like to show that the solution has the form 

h~ v f c) = ho(s, v l c) + 0(~)  

where ho(s, v[c)=ho(slc)  (the dependence on v in the corresponding 
distribution function )Co : = h o ' g  is in the factor g, which represents the 
equilibrium distribution); and where ho is given by the sum of a global 
equilibrium term plus a linear one, with a gradient given by the differences 
of the boundary color distribution. This will be shown in the following. We 
start from Eq. (3.3), 

v 8~h ~=~-lAh~ 

with boundary conditions for the distribution function f~(s, v, c ) =  
he(x, v Jc). g(v) "factorized," i.e., given as a product of functions of v and c. 
This means that for the function h ~ we get boundary values dependent on c 
only: 

h~(+l, v lc)=O+(c) ,  v < 0 ;  h~(-1,  v l c ) = O  (c), v > 0  

We assume that the solution h ~ has the form 

h~=ho(slc) + ehl(s, vlc) + R~(s, v, c) 

so that Eq. (3.3) becomes 

v 8,(ho + ehl + R E) = ~ -1A(ho + ehl + R ~) (4.1) 

By equating coefficients of equal powers of e, we have 

Ah o = O, v 8sho = Ahl (4.2) 

It follows that ho = ho(s]c) is "hydrodynamic" (hoe Ker A), and a 
"nonhydrodynamic" solution hi of (4.2) (hi _1_ KerA)  will be completely 
determined in terms of h o. In fact, if P is the projector on Ker A, we have 

P(v Osho) = 0 
(4.3) 

hi = A -~(v 8sho) = 8~hoA -~(v) 

A-J(v) is explicitly computable (see Appendix). 
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The hydrodynamic equation for h 0 is of Navier-Stokes type; it comes 
from the first-order equation in the Chapman-Enskog expansion (the Euler 
equation is trivial): 

P(v ~(ho  + ~ h l ) ) = 0  

Thus, by Eqs. (4.3) we obtain 

i.e., 

P(v 3sho) + eP(v c~s(A-t(v) Osho) ) = 0  

P ( v A - l ( v ) )  ~2h o = 0 

This gives the macroscopic equation ~2h0=0, which, via the boundary 
conditions he( +_ 11 c) = ~0 + (c), is explicitly solvable: 

so that 

~+(c)-4,_(c) 4,+(c)§ 
ho(s I c) = s + 

2 2 

h l ( v l c ) - t P + ( c ) - t p - ( C )  A l(v ) 
2 

Ilh111 o~ < const 

From Eq. (4.1) we find the equation for the error R ~ :=h  ~ -  (ho+eha), 

v ~s R ~ = e - I A R ~  

R ~ ( + I , v , c ) =  -~hl(vLc) ,  v < 0  

R~( -  1, v, c) = - e h i ( v l c ) ,  v > 0 

The estimate of the solution in term of the boundary data applies and we 
obtain 

Thus, we have 

this means 

life(s, v, c) - g(v) ho(slc)ll co <~ g(v)Ilk ~ - ho[I o~ ~< 2~ Ilgll co IIh111 co 

and Theorem 2 is proven. 
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5. A DISCRETE V E R S I O N  OF THE M O D E L  

We shall calculate the explicit solution of a discretized version of the 
previous model, i.e., let us restrict the values of admissible vx velocities to 
the set { - 1, + 1 }. 

The solution of this very simplified problem, which will be given in 
explicit form, shows the same qualitative behavior as the "full" solution as 
the size of the slab goes to infinity. 

In this model the "color" is parametrized by the same continuous 
variable c ~ ~, and f •  c) is the distribution function corresponding to 
v x = +_1.  

Again g+_ : = ~ f + ( x , c ) d c  do not depend on x, and the boundary 
conditions at _+L define g+ up to a normalization constant. 

The resulting system becomes (x e [ - L ,  + L ] )  

Oxf+(x, c ) =  2 g + f  (x, c ) -  2 g _ f + ( x ,  c) 

-~3x f  (X, c )= 2 g _ f + ( x ,  c ) - 2 g + f _ ( x ,  c) 

with the boundary conditions 

f + ( - L , c ) = H  ( c ) g _ ,  f _ ( + L , c ) = H + ( c ) g +  

The condition of vanishing net flux gives, with y H+_ dc = 1, g_ = g+ := g 
(this number plays the role of a normalization constant). 

Straightforward calculations [starting from 8x(f+ - f - ) =  0] lead to 
the final form 

f+  (x, c) = 2g 2 H+ (c) - H (c) (x + L) + H v_ (c) g 
- 1 + 4gL - 

We end with the asymptotic behavior in the scaled space variable 
s = x /L  = ~x: 

e S f + ( , c ) = l g { [ H + ( c ) + H _ ( c ) ] + [ H + ( c ) - H  (c)]s} 

+ ke{ [H_(c)  - H+(c)] (s  + 1)} + o(e) 

We note that at the zeroth-order term in e the two distributions f +  and f% 
coincide: in fact, this term describes the local equilibrium given by a global 
equilibrium term plus a linear term as in the general case. 

A P P E N D I X  

We want to show the explicit form of the solutions to the equation 

A r  (A.1) 

where the operator A is defined in (3.3). 
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First, one can observe that the function on the right-hand side of (A.1) 
belongs to the range of A, being orthogonal to Ker A in L,('2(~ , g(v)dr). 
This comes from the conservation of mass at the walls: ~ vg(v)dv = O. 

Let us first see in more detail the structure of Ker A: if ( . ,  - ) denotes 
the scalar product in 5~ g(v)dr), from the analysis of the quadratic 
form associated with A we get 

~b0 ~ Ker A'r (~bo, A~bo) = 0  

On the other hand, for every 0 e D(A) 

(~9, A s ) = - 1 / 2  f g(v) g(w)Iv - w] [~9(v) - if(w)] 2 dw dv 

which gives 

~bo e Ker  A r ~bo(V) = ~bo(W) = const 

Let us now return to the previous question, noting that the (infinite) 
solutions of Eq. (A.1) will be defined up to arbitrary constants. 

From the identity, valid for every ~ ~ D(A), 

If 1 I v -  u[ ~(v) g(u) du = 2g(v) ~9(v) 

by double differentiation with respect to v of (A.1), we have 

- 2k'(v) ~ ' (v)  - k(v) t~"(v) = 0 

We easily get 

r = Cl Jz k2(u) 

where z and cl are to be chosen in the following; we need to find c~ in 
order that 

cl I v -  wl k - ~  g(w) dw =- v 

(where obviously the "additive" constant z does not appear, since 
Ker A = {eonst.}). 
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The choice of cl is easily made by looking to the asymptotic behavior 
as /)--+GO" 

implies, as v--+ + oo, 

C 1 g { w )  + oo k2(b/~--) d w  = 1 =:> c 1 

where m o = .[ g(v) dr. 
To get this result we 

integrations by parts. 

[f ;w ], = g(w) + oo k2(u) dw 

used the identity 2g(v_)=k"(v) and some 

Now we can choose the other constant z to obtain a solution ~ such 
that, if z = Zo, 

5_ Ker A; i.e., < 1 , ~ ) =  g(v) o k - - ~ d v = O  

This choice of z 0 is easily seen to be possible and unique, because the scalar 
product (1, i f )  depends on z in a monotonic way, and changes sign when 
z varies from - a v  to + oo. So we can write the "nonhydrodynamic" 
solution ~bo to Eq. (A.1) in the following explicit form: 

m o f + ~  dv q- I  ~ dw 

ACKNOWLEDGMENTS 

We thank J. Lebowitz for having suggested the study of this model; we 
acknowledge many useful conversations with E. P. Presutti, who suggested 
some improvements and future developments; and we thank A. Galves for 
constructive discussions related to the stochastic aspects in order to extend 
the previous results. 

This work was partially supported by CNR (GNFM),  CNR- 
PSAITM, and MPI. 



690 laniro and Triolo 

N O T E  A D D E D  IN P R O O F  

A more  general  uniqueness  result  is ob ta ined  by  using the energy 
es t imate  for the h o m o g e n e o u s  p rob lem:  scalar  mul t ip ly ing  the equa t ion  
with the u n k n o w n  itself and  in tegra t ing  on x e [ - L , L ] ,  f rom the 
nonpos i t iv i ty  of A and  homogene i ty  of b o u n d a r y  condi t ions ,  we get 
the uniqueness  result.  
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